Page 308 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 308
14.6 Aceleración en el movimiento armónico simple 289
Solución (a): Sabemos que / = 0.5 Hz, A = 0.06 m y 9 = 90°. La velocidad máxima se
determina sustituyendo estos datos en la ecuación (14.9). Recuerde que sen 90° = 1.
Vmáx = -277/A sen90° = - 2 t t/A
= -27r(0.5H z)(0.06m )
= —0.188 m/s
El signo negativo indica que la primera velocidad máxima es —18.8 cm /s en dirección
izquierda. Si hubiéramos sustituido 270° para el ángulo 9, la velocidad máxima hubiera
sido +18.8 cm /s hacia la derecha.
Solución (b): En este caso se pide determinar la posición y la velocidad en un instante
determinado: 5.2 s. Cuando el ángulo de referencia 6 se escribe como 2 v ft es indispen
sable recordar que los ángulos deben expresarse en radianes, no en grados. Cerciórese de
que su calculadora está configurada para leer los ángulos en radianes. Como un pequeño
error en la medida de éstos es importante, mejor asegúrese de no redondear sus datos hasta
que haya alcanzado la respuesta final. El desplazamiento en t = 5.2 s se halla a partir de
la ecuación (14.9)
x = Acos(27rft) = (0.06 m) cos[2tt(0.5 Hz)(5.2 s)]
= (0.06 m )cos(l6.34 rad) = (0.06 m )(-0.809)
= —0.0485 m = —4.85 cm
La velocidad se encuentra con la ecuación (14.11) usando el mismo ángulo, en radianes
v = -2irfA sen(16.34 rad)
= —2ir(0.5 Hz)(0.06 m )(-0.588)
= +0.111 m/s = +11.1 cm/s
Cabe observar que la velocidad después de 5.2 s es positiva, lo que indica que la masa se
mueve a la derecha en ese instante.
Aceleración en el movimiento armónico simple
La velocidad de un cuerpo que oscila jamás es constante. Por tanto, la aceleración tiene suma
relevancia en las ecuaciones obtenidas para la posición y la velocidad en la sección anterior.
Ya contamos con una expresión para predecir la aceleración en función de la distancia; ahora
deduciremos la relación con el tiempo.
En la posición de desplazamiento máximo (±A), la velocidad de una masa que oscila
es igual a cero. Es en ese instante cuando la masa está sometida a la máxima, fuerza de resti
tución. Por consiguiente, su aceleración es máxima cuando su velocidad es cero. Cuando la
masa se aproxima a su posición de equilibrio, la fuerza de restitución (y, por tanto, la acelera
ción) se reduce hasta llegar a cero en el centro de la oscilación. En la posición de equilibrio,
la aceleración es igual a cero y la velocidad alcanza su valor máximo.
Miremos el círculo de referencia de la figura 14.9, trazado para estudiar la aceleración a
de una partícula que se mueve con movimiento armónico simple (MAS). Note que la acelera
ción centrípeta a de una masa que se mueve en un círculo de radio R = A se compara con la
aceleración de su propia sombra. La aceleración a de la sombra representa el MAS y es igual
a la componente horizontal de la aceleración centrípeta ac de la masa. Con base en la figura,
a = —ac eos 9 = —ac eos cot (14.12)
donde <w = 2nrf. El signo menos indica que la aceleración es opuesta al desplazamiento pero
igual a la dirección de la velocidad.