Page 255 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 255
236 Capítulo 11 Rotación de cuerpos rígidos
Conservación de la cantidad de movimiento angular
Podemos entender mejor la definición de movimiento si regresamos a la ecuación básica para
el movimiento angular, t = la. Recuerde la ecuación que define la aceleración angular
Cüf — Cúq
podemos escribir la segunda ley de Newton como
( a ) f- c o 0
= 1 -
V t
Al multiplicar por t, obtenemos
Tt = IíOf — Iü)0 (11.19)
Impulso angular = cambio en la cantidad de movimiento angular
El producto Tt se define como impulso angular. Observe la semejanza entre esta ecuación y
la que se obtuvo en el capítulo 9 para el impulso lineal.
Si no se aplica ningún momento de torsión externo a un cuerpo que gira, podemos esta
blecer r = 0 en la ecuación (11.19), y obtener
0 = Iíüf — ICú0
Icüf = Icón -o (11.20)
Cantidad de movimiento angular final = cantidad de movimiento angular inicial
De esta manera, llegamos a un enunciado para expresar la conservación de la cantidad de
movimiento angular:
Si la suma de los momentos de torsión externos que actúan sobre un cuerpo
o sistema de cuerpos es cero, la cantidad de movimiento angular permanece
sin cambios.
Este enunciado resulta verdadero aun en el caso de que el cuerpo que gira no sea rígido, sino
que pueda cambiar su forma de tal modo que su momento de inercia cambie. En este caso, la
rapidez angular también cambia de tal modo que el producto Ico siempre es constante. Los pa
tinadores, clavadistas y acróbatas controlan la rapidez con que giran sus cuerpos extendiendo
o encogiendo sus extremidades para aumentar o disminuir su rapidez angular.
Un experimento interesante que ilustra la conservación de la cantidad de movimiento
angular se muestra en la figura 11.13. Una mujer está parada sobre una plataforma giratoria y
Figura 11.13 Experimento para demostrar la conservación de la cantidad de movimiento angular. La mujer
controla su velocidad de rotación moviendo las pesas hacia adentro para aumentar su rapidez rotacional o
hacia afuera para disminuirla.