Page 252 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 252
11.8 Rotación y traslación combinadas 233
El desplazamiento angular 8 es
1 9
6 = cont H— a r
2
= 0 + ” (7.20 rad/s2)(4 s)2 = 57.6 rad
El trabajo es, por tanto,
Trabajo = t6 = (36 N • m)(57.6 rad) = 2070 J
Por último, la potencia media es el trabajo por unidad de tiempo, o
Trabajo _ 2 070 J
P = 518 W
4 s
El mismo resultado podría encontrarse si se calcula la velocidad angular media w y se
usa la ecuación (11.15). Como ejemplo adicional, podríamos decir que el trabajo realizado es
igual al cambio en la energía rotacional.
Rotación y traslación combinadas
Para comprender la relación entre el movimiento rectilíneo y angular de un objeto que rota,
primero considere que un disco circular de radio R se desliza a lo largo de una superficie ho
rizontal sin rotación ni fricción. Como se muestra en la figura 11.10a, cualquier pieza de este
disco viajará a una velocidad igual a la del centro de la masa.
Ahora bien, suponga que el mismo disco rota libremente sin deslizarse por la misma
superficie, como en la figura 11.10b. Se requiere más energía para mantener la misma rapidez
horizontal, ya que ahora además de rotación hay traslación. Como no hay deslizamiento, el
centro de la masa del disco está rotando en relación al punto de contacto P con la misma ve
locidad angular que la del disco que está rotando. Así, podemos escribir una relación familiar
entre la velocidad tangencial v del centro de la masa del disco y su rapidez rotacional co.
v
i' = coR o (o = —
R
Para saber si ha comprendido esta ecuación considere una rueda de bicicleta de 50 cm de
radio que rota a 20 rad/s. Verifique que la rapidez horizontal de la bicicleta sea 10 m/s.
Al trabajar con problemas que involucran tanto la rotación como la traslación, debemos
recordar sumar la energía cinética rotacional KR a la energía cinética trasnacional Kr Por
ejemplo, al aplicar el principio de conservación de la energía total, sabemos que el total de
todos los tipos de energía antes de un suceso debe ser igual al total después del suceso más
cualquier pérdida debida a la fricción o a otras fuerzas disipativas.
(U0 + K to + Kr o) = (JJj + KTf + KRf) + (Pérdidas | (11.16)
p p
(a) (b)
Figura 11.10 (a) Todas las partes de un disco en traslación pura se mueven con la velocidad vai¡ del centro
de masa, (b) Un objeto rodando es una combinación de traslación y rotación de tal forma que la velocidad
lineal horizontal está dada por v = uR.