Page 117 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 117
98 Capítulo 5 Mom ento de torsión y equilibrio rotacional
Figura 5.5 Cálculo del momento de torsión.
estructura física, como el mango de la llave de tuercas. A partir de la figura se obtiene
r = (10 in) sen 60° = 8.66 in
t = Fr — (20 lb)(8.66 in) = 173 Ib • in
Si se desea, este momento de torsión se puede transformar en 14.4 Ib • ft.
En algunas aplicaciones, es más útil trabajar con las componentes de una fuerza para
obtener el momento de torsión resultante. En el ejemplo anterior se podría haber separado
el vector de 20 Ib en sus componentes horizontal y vertical. En vez de hallar el momento de
torsión de una sola fuerza, sería necesario encontrar el momento de torsión de las dos fuerzas
componentes. Como indica la figura 5.6, el vector de 20 Ib tiene sus componentes Fx y F , las
cuales se calculan por trigonometría:
Fx = (20 lb)(cos 60°) = 10 Ib
Fy = (20 lb)(sen 60°) = 17.3 Ib
Observe en la figura 5.6b que la línea de acción de la fuerza de 10 Ib pasa por el eje de
rotación. Esto no produce ningún momento de torsión porque su brazo de palanca es cero. Por
tanto, el momento de torsión total se debe a la componente de 17.3 Ib, que es perpendicular
al mango. El brazo de palanca de esta fuerza es la longitud de la llave inglesa, y el momento
de torsión es
t = Fr = (17.3 lb)(10 in) = 173 Ib • in
Observe que utilizando este método se obtiene el mismo resultado. No hacen falta más
cálculos, porque la componente horizontal tiene un brazo de palanca de cero. Si elegimos las
componentes de una fuerza a lo largo y perpendicularmente a la distancia conocida, tan sólo
nos interesa el momento de torsión de la componente perpendicular.
(a) (b)
Figura 5.6 Método de las componentes para el cálculo del momento de torsión.