Page 113 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 113
94 Capítulo 5 M om ento de torsión y equilibrio rotacional
Objetivos
C uando term ine de estudiar este capítulo el alum no:
1. Ilustrará m ediante ejem plos y definiciones su com prensión de los térm inos
brazo de palanca y m om ento de torsión.
2. Calculará el m om ento de torsión resultante respecto a cualquier eje, dadas las
m agnitudes y posiciones de las fuerzas que actúan sobre un o b je to alargado.
3. Determ inará las fuerzas o distancias desconocidas aplicando la prim era y se
gunda condiciones de equilibrio.
4. Defin irá centro de gravedad y dará ejem plos de dicho concepto.
En los capítulos anteriores nos hemos referido a las fuerzas que actúan en un solo punto. Exis
te un equilibrio traslacional cuando la suma vectorial es cero. Sin embargo, en muchos casos
las fuerzas que actúan sobre un objeto no tienen un punto de aplicación común. Este tipo de
fuerzas se llaman no concurrentes. Por ejemplo, un mecánico ejerce una fuerza en el maneral
de una llave para apretar un perno. Un carpintero utiliza una palanca larga para extraer la tapa de
una caja de madera. Un ingeniero considera las fuerzas de torsión que tienden a arrancar una
viga de la pared. El volante de un automóvil gira por el efecto de fuerzas que no tienen un
punto de aplicación común. En casos como éstos, puede haber una tendencia a girar que se
define como momento de torsión. Si aprendemos a medir y a prever los momentos de torsión
producidos por ciertas fuerzas, será posible obtener los efectos rotacionales deseados. Si no se
desea la rotación, es preciso que no haya ningún momento de torsión resultante. Esto conduce
en forma natural a la condición de equilibrio rotacional, que es muy importante en aplicacio
nes industriales y en ingeniería.
' V i á U Condiciones de equilibrio
Cuando un cuerpo está en equilibrio, debe encontrase en reposo o en estado de movimiento
rectilíneo uniforme. De acuerdo con la primera ley de Newton, lo único que puede cambiar
dicha situación es la aplicación de una fuerza resultante. Hemos visto que si todas las fuerzas
que actúan sobre un cuerpo tienen un solo punto de intersección y si su suma vectorial es
igual a cero, el sistema debe estar en equilibrio. Cuando sobre un cuerpo actúan fuerzas que
no tienen una línea de acción común, tal vez exista equilibrio traslacional pero no equilibrio
rotacional. En otras palabras, quizá no se mueva ni a la derecha ni a la izquierda, tampoco ha
cia arriba ni hacia abajo, pero puede seguir girando. Al estudiar el equilibrio debemos tomar
en cuenta el punto de aplicación de cada fuerza además de su magnitud.
Considere las fuerzas que se ejercen sobre la llave de tuercas de la figura 5.1a. Dos fuer
zas F iguales y opuestas se aplican a la derecha y a la izquierda. La primera condición de
equilibrio nos dice que las fuerzas horizontales y verticales están equilibradas; por lo tanto,
se dice que el sistema está en equilibrio. No obstante, si las mismas dos fuerzas se aplican
como indica la figura 5.1b, la llave de tuercas definitivamente tiende a girar. Esto es cierto
incluso si el vector que resulta de la suma de las fuerzas sigue siendo cero. Es obvio que se
requiere una segunda condición de equilibrio que explique el movimiento rotacional. Un
enunciado formal de esta condición se presentará posteriormente, aunque antes es necesario
definir algunos términos.
En la figura 5.1b, las fuerzas F no tienen la misma línea de acción.
La línea de acción de una fuerza es una línea im aginaria que se extiende ind e
fin id am ente a lo largo del vector en ambas direcciones.
Cuando las líneas de acción de las fuerzas no se intersecan en un mismo punto, puede haber
rotación respecto a un punto llamado eje de rotación. En nuestro ejemplo, el eje de rotación
es una línea imaginaria que pasa a través del perno en dirección perpendicular a la página.