Page 357 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 357
338 Capítulo 16 Temperatura y dilatación
Debido a problemas de reproducibilidad para medir exactamente los puntos de conge
lación y de ebullición del agua, la Oficina Internacional de Pesos y Medidas estableció una
nueva norma en 1954, la cual se basa en el punto triple del agua, que es la única temperatura
y presión en la que el agua, el vapor de agua y el hielo coexisten en equilibrio térmico. Este
hecho tan útil ocurre a una temperatura de aproximadamente 0.01°C y a una presión de 4.58
mm de mercurio. Para conservar la congruencia con las medidas anteriores, la temperatura
del punto triple del agua quedó establecida exactamente en 273.16 K. Por tanto, el kelvin se
define actualmente como la fracción 1/273.16 de la temperatura del punto triple del agua. La
temperatura en el SI ahora se fija por esta definición, y todas las demás escalas deben redefi-
nirse tomando como base únicamente esta temperatura como patrón.
Una segunda escala absoluta, denominada la escala Rankine, sigue empleándose muy
limitadamente pese a los esfuerzos de varias organizaciones para eliminarla totalmente. El
grado Rankine se incluye en este texto sólo para tener el panorama de este tema. Tiene su
punto de cero absoluto a —460°F, y los intervalos de grado son idénticos al intervalo de
grado Fahrenheit. La relación entre la temperatura en grados Rankine (°R) y la temperatura
correspondiente en grados Fahrenheit es
TR = tF + 460 (16.6)
Recuerde que las ecuaciones (16.5) y (16.6) se aplican para temperaturas específicas. Si
nos interesa un cambio de temperatura o una diferencia en temperatura, el cambio absoluto o
la diferencia es la misma en kelvins que en grados Celsius. Es útil recordar que
1 K = 1°C 1°R = 1°F (16.7)
Ejemplo 16.3 r Un termómetro de mercurio y vidrio no puede usarse a temperaturas por debajo de —40°C,
ya que ese metal se congela a tal temperatura, (a) ¿Cuál es el punto de congelación del
mercurio en la escala Kelvin? (b) ¿Cuál es la diferencia entre esta temperatura y el punto
de congelación del agua? Exprese su respuesta en kelvins.
Solución (a): Sustituyendo directamente —40°C en la ecuación (16.5) nos queda
Tk = —40°C + 273 = 233 K
Solución (b): La diferencia en los puntos de congelación es
Dt = 0°C - (—40°C) = 40°C
Puesto que la magnitud del kelvin es idéntica a la del grado Celsius, la diferencia es tam
bién de 40 kelvins.
En este punto se preguntará por qué se siguen conservando las escalas Celsius y Fahren
heit. Cuando se trabaja con calor, casi siempre lo que interesa son diferencias de temperatura.
En realidad, una diferencia en temperatura es necesaria para que haya transferencia de calor. Si
no fuera así, el sistema estaría en equilibrio térmico. Puesto que las escalas Kelvin y Rankine
se basan en los mismos intervalos que las escalas Celsius y Fahrenheit, no hay diferencia en
la escala que se use para intervalos de temperatura. Por otra parte, si una fórmula requiere una
temperatura específica más que una diferencia de temperatura, se debe usar la escala absoluta.
Dilatación lineal
El efecto más frecuente producido por cambios de temperatura es un cambio en el tamaño. Con
pocas excepciones, todas las sustancias incrementan su tamaño cuando se eleva la temperatura.
Los átomos en un sólido se mantienen juntos en un arreglo regular debido a la acción de fuer
zas eléctricas. A cualquier temperatura los átomos vibran con cierta frecuencia y amplitud. A