Page 57 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 57
38 Capítulo 3 Mediciones técnicas y vectores
Hay que observar que, aun cuando el pie, la libra y otras unidades se usan con frecuencia
en Estados Unidos, se han definido de nuevo en términos de los patrones de unidades del SI.
Gracias a eso, actualmente todas las mediciones están basadas en los mismos patrones.
Medición de longitud y tiempo
El patrón de la unidad de longitud del SI, el metro (m), originalmente se definió como la
diezmillonésima parte de la distancia del Polo Norte al Ecuador. Por razones prácticas, esta
distancia fue registrada en una barra de platino iridiado estándar. En 1960, el patrón se cam
bió para facilitar el acceso a una medida más precisa del metro, basada en un patrón atómico.
Se acordó que un metro era exactamente igual a 1 650 763.73 longitudes de onda de la luz
rojo-anaranjada del kriptón 86. Se eligió el número de modo que el nuevo patrón se aproxi
mara al antiguo patrón. Sin embargo, la adopción de este patrón tampoco estuvo exenta
de problemas. La longitud de onda de la luz emitida por el criptón era incierta debido a que el
proceso tiene lugar dentro del átomo, durante la emisión. Además, el desarrollo del láser
estabilizado permitió medir una longitud de onda con mucho mayor precisión, en términos
de tiempo y velocidad de la luz. En 1983 se adoptó el patrón más reciente para el metro (y
probablemente el definitivo):
Un metro es la longitud de la trayectoria que recorre una onda luminosa en el
vacío durante un espacio de tiempo de 1/299 792 458 segundos.
El nuevo patrón del metro es más preciso, y tiene además otras ventajas. Su definición
depende del patrón de tiempo (s) y éste se basa en un valor común de la velocidad de la luz.
En la actualidad se considera que la velocidad de la luz es exactamente:
c = 2.99792458 X 108 m/s (exacta por definición)
Tiene sentido asignar un valor común a la velocidad de la luz porque, de acuerdo con la
teoría de Einstein, la velocidad de la luz es una constante fundamental. Más aún, cualquier refi
namiento futuro del patrón para medir el tiempo mejorará automáticamente el patrón para la lon
gitud. Por supuesto, en general no es necesario saber la definición exacta de longitud para llevar
a cabo mediciones prácticas y precisas. Gran número de herramientas, como los escalímetros
sencillos en forma de regla o calibrador, se gradúan de acuerdo con el patrón de medida.
La definición original de tiempo se basó en la idea del día solar, definido como el espacio
de tiempo transcurrido entre dos apariciones sucesivas del Sol sobre un determinado meridia
no de la Tierra. Así pues, un segundo era 1/86 400 del día solar medio. No es difícil imaginar
las dificultades e incongruencias a las que daba lugar dicho patrón. En 1967, el patrón de
tiempo del SI quedó definido de la siguiente forma:
Un segundo representa el tiempo necesario para que el átomo de cesio vibre
9 192 631 770 veces.
Por tanto, el patrón atómico de un segundo es el periodo de vibración de un átomo de
cesio. Los mejores relojes de cesio son tan precisos que no se adelantan ni se atrasan más
de 1 segundo en 300 000 años.
Debido a que esta medida de tiempo tiende a imponerse a la del día solar medio, la Natio
nal Bureau of Standards suma periódicamente a la hora un salto de un segundo, por lo general
una vez al año, el 31 de diciembre. Por tanto, el último minuto de cada año tiene a menudo 61
segundos, en vez de 60 segundos.
Otra ventaja del sistema métrico sobre otros sistemas de unidades es el uso de prefijos
para indicar los múltiplos de la unidad básica. La tabla 3.4 define los prefijos aceptados y
muestra su uso para indicar múltiplos y subdivisiones del metro. A partir de la tabla es posible
determinar que:
1 metro (m) = 1000 milímetros (mm)
1 metro (m) = 100 centímetros (cm)
1 kilómetro (km) = 1000 metros (m)