Page 232 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 232
10.10 Leyes de Kepler 213
Ejemplo 10.11 jf ¿Cuál debe ser la altitud de todos los satélites sincrónicos que están colocados en órbita
alrededor de la Tierra?
Pía n: El periodo de uno de tales satélites es igual a un día, o 8.64 X 104 s. Con este dato,
usaremos la ecuación (10.20) para determinar la distancia r desde el centro de la Tierra.
Luego restaremos el radio del planeta para obtener la altura h sobre la superficie terrestre.
Solución: La distancia r que va del centro de la Tierra al satélite se calcula con
('4t72\ 3 3 ( G m f-
T- = ------ r o r =
G m J \ 4-tt
3 (6.67 X 10~n N • m2/kg2)(5.98 X 1024kg)(8.64 X 104 s)2
r = -------------------------------------— j------------------------------------
47T
= 7.54 X 1022 m3
después de obtener la raíz cúbica de ambos miembros se obtiene
r = 4.23 X 107 m
Por último, después de restar el radio de la Tierra encontramos que
h = 42.3 X 106 m - 6.38 X 106 m = 35.8 X 106 m
La órbita geocéntrica debe tener 35 800 km o más de 22000 millas sobre la superficie
terrestre.
f Í í ¡ | L e y e s de Kepler
Durante miles de años se ha estudiado el movimiento de los planetas y las estrellas. Desde
el siglo II d. C.. el astrónomo griego Claudio Ptolomeo postuló la teoría de que la Tierra era el
centro del universo. Muchos siglos después, Nicolás Copémico (1473-1543) fue capaz de
demostrar que la Tierra y otros planetas en realidad se movían en órbitas circulares alrededor
del Sol.
El astrónomo danés Tycho Brahe (1546-1601) realizó gran número de mediciones sobre
el movimiento de los planetas durante un periodo de 20 años, proporcionando medidas de
notable precisión sobre el movimiento de los planetas y de más de 700 estrellas visibles al
ojo humano. Puesto que el telescopio todavía no se inventaba, Brahe hizo sus mediciones
utilizando un gran sextante y un compás. A partir de estas primeras observaciones el modelo
del sistema solar ha evolucionado hasta llegar al que se acepta actualmente.
El astrónomo alemán Johannes Kepler, discípulo de Brahe. retomó los innumerables da
tos recopilados por su mentor y trabajó con ellos muchos años intentando desarrollar un mo
delo matemático que concordara con los datos observados. Al principiar esta investigación
parecía obvio a Kepler que las órbitas de los planetas pudieran no ser circulares. Sus estudios
demostraron que la órbita del planeta Marte era en realidad una elipse, con el Sol en uno de
sus focos. Esta conclusión posteriormente se generalizó para todos los planetas que giran
alrededor del Sol, y Kepler fue capaz de establecer varios enunciados matemáticos relaciona
dos con el sistema solar. Hoy en día dichos enunciados se conocen como las leyes de Kepler
del movimiento planetario.
Primera ley de Kepler: Todos los planetas se mueven en órbitas elípticas con
el Sol en uno de los focos. Esta ley a veces se llama ley de órbitas.
En la figura 10.14 se presenta un planeta de masa mp que se mueve en una órbita elíptica
alrededor del Sol, cuya masa es ms. El eje semimayor es a y el eje semimenor es b. El valor
más pequeño de la distancia r del planeta al Sol se llama perihelio y el valor más grande