Page 188 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 188
8.7 Energía y fuerzas de fricción 169
En las aplicaciones del mundo real no es posible dejar de considerar las fuerzas externas;
por tanto, es posible obtener un postulado aún más general del principio de conservación de
la energía reescribiendo la ecuación (8.9) en términos de los valores inicial y final de la altura
y la velocidad:
mgh0 + K nvl = mghf + ^mv} + \fkx\ (8.10)
Se ha sustituido el término que denota la pérdida de energía por el valor absoluto del trabajo
realizado por una fuerza cinética de fricción ejercida a lo largo de la distancia x.
Naturalmente, si un objeto parte del reposo (v0 = 0) a partir de una altura hQ sobre su
posición final, la ecuación (8 .1 0) se simplifica a
mgh0 = ~m vj + \fkx\ (8.11)
Al resolver problemas, es útil establecer la suma de las energías potencial y cinética en algún
punto inicial. Luego se determina la energía total en el punto final y se suma el valor absoluto
de cualquier pérdida de energía. La conservación de la energía precisa que estas dos ecuacio
nes sean equivalentes. Con base en tal postulado, se puede determinar entonces el parámetro
incógnito.
f e 1 Un trineo de 20 kg descansa en la cima de una pendiente de 80 m de longitud y 30° de
inclinación, como se observa en la figura 8.9. Si ¡xt = 0.2, ¿cuál es la velocidad al pie del
plano inclinado?
Plan: Al principio la energía total £ es la energía potencial U = mghQ. Una parte se pier
de al realizar trabajo contra la fricción f kx, lo que deja el resto para la energía cinética
X = \m v2. Se traza un diagrama de cuerpo libre como el de la figura 8.9, el cual se usa para
calcular la magnitud de la fuerza de fricción. Por último, después de aplicar la ley de la
conservación de la energía es posible determinar la velocidad al pie del plano inclinado.
Solución: Antes de hacer algún cálculo, escribamos la ecuación de la conservación en
términos generales. La energía total en la cima ha de ser igual a la energía total en la parte
inferior menos la pérdida por realizar trabajo contra la fricción.
mgh0 + ^m v 5 = mghf + | mv} + | f kx\
(a) (b)
Figura 8.9 Una parte de la energía potencial inicial que tenía el trineo en la cima del plano inclinado se
pierde debido al trabajo que se realiza para contrarrestar la fricción cuando el trineo desciende.