Page 234 - Quimica - Undécima Edición
P. 234
204 CAPÍTULO 5 Gases
• Ley de Boyle . La presión ejercida por un gas es consecuencia del impacto de sus
moléculas sobre las paredes del recipiente que lo contiene. La velocidad de colisión,
o el número de colisiones moleculares con las paredes, por segundo, es proporcional
a la densidad numérica (es decir, el número de moléculas por unidad de volumen) del
gas. Al disminuir el volumen de cierta cantidad de gas aumenta su densidad numéri-
ca, y por lo tanto, su velocidad de colisión. Por esta causa, la presión de un gas es
inversamente proporcional al volumen que ocupa; cuando el volumen disminuye, la
presión aumenta y viceversa.
• Ley de Charles . Puesto que la energía cinética promedio de las moléculas de un gas
es proporcional a la temperatura absoluta de la muestra (suposición 4), al elevar la
temperatura aumenta la energía cinética promedio. Por consiguiente, las moléculas
chocarán más a menudo contra las paredes del recipiente y con mayor fuerza si el
gas se calienta, aumentando entonces la presión. El volumen del gas se expandirá
hasta que la presión del gas esté equilibrada por la presión externa constante (vea la
fi gura 5.8).
• Ley de Avogadro . Se ha demostrado que la presión de un gas es directamente pro-
Otra forma de expresar la ley de
Avogadro es que a la misma presión y porcional a la densidad y a la temperatura del gas. Como la masa del gas es directa-
temperatura, volúmenes iguales de mente proporcional al número de moles (n) del gas, la densidad se expresa como n/V.
gases, sin importar si son los mismos
gases o diferentes, contienen igual nú- Por lo tanto
mero de moléculas.
n
P ~ T
V
Para dos gases, 1 y 2, escribimos
n 1 T 1 n 1 T 1
P 1 ~ 5 C
V 1 V 1
n 2 T 2 n 2 T 2
P 2 ~ 5 C
V 2 V 2
donde C es la constante de proporcionalidad. Por lo tanto, para dos gases sometidos
a las mismas condiciones de presión, volumen y temperatura (es decir, cuando P 1 5
P 2 , T 1 5 T 2 y V 1 5 V 2 ), se cumple que n 1 5 n 2 , que es una expresión matemática de
la ley de Avogadro.
• Ley de Dalton de las presiones parciales . Si las moléculas no se atraen o repelen
entre sí (suposición 3), entonces la presión ejercida por un tipo de molécula no se
afectará por la presencia de otro gas. Como consecuencia, la presión total estará dada
por la suma de las presiones individuales de los gases.
Distribución de las velocidades moleculares
La teoría cinética de los gases permite investigar el movimiento molecular con mayor
detalle. Suponga que tenemos muchas moléculas de gas, por ejemplo 1 mol, en un reci-
piente. Mientras la temperatura se mantenga constante, la energía cinética promedio y la
velocidad cuadrática media permanecerán inalteradas con el paso del tiempo. Como es de
esperar, el movimiento de las moléculas resulta totalmente aleatorio e impredecible. En
un momento dado, ¿cuántas moléculas estarán en movimiento a una velocidad particular?
Para responder a esta pregunta, Maxwell analizó el comportamiento de las moléculas de
los gases a distintas temperaturas.
En la fi gura 5.17a) se muestran algunas curvas de distribución de velocidad de
Maxwell comunes para el nitrógeno gaseoso a tres temperaturas distintas. A una tempera-
tura dada, la curva de distribución indica el número de moléculas que se mueven a cierta
velocidad. El pico de cada curva representa la velocidad más probable, es decir, la velo-
cidad del mayor número de moléculas. Observe que la velocidad más probable aumenta