Page 104 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 104
4.7 Fricción 85
La sustitución de W en la ecuación (4.16) nos permite obtener el valor de la fuerza normal,
n.
n - wy = n - 104 n = o o n = 104 n
Con base en la ecuación (4.15), ahora resolvemos para obtener el empujón P, lo que
resulta
P =fk+ W,
Pero fk = ¡ikn, de modo que
p = p,,n + w
Ahora podemos determinar P sustituyendo ¡ik = 0.5, n = 104 N y Wy = 60.0 N:
P = (0.5X104 N) + 60 N
P = 52.0 N + 60.0 N o P = 1 1 2 N
Observe que el empuje P hacia arriba del plano debe en este caso contrarrestar tanto la
fuerza de fricción de 52 N como la componente de 60 N del peso del bloque hacia abajo
del plano.
Solución (b): En el segundo caso, el empuje P es necesario para retrasar el natural mo
vimiento hacia abajo del bloque hasta que su rapidez permanezca constante. La fuerza de
fricción se dirige ahora hacia arriba del plano inclinado, en la misma dirección que el
empuje P. La fuerza normal y las componentes del peso no cambiarán. Por ende, al sumar
las fuerzas a lo largo del eje x se obtiene
2 ^ = 0; p + f k - w x o
=
Ahora podemos encontrar el valor de P y sustituir los valores de fk y Wx
-
P = W f ; = 60 N - 52 N
.x J k
P = 8.00 N
La fuerza de 8.00 N y la fuerza de fricción de 52.0 N, ambas dirigidas hacia arriba del
plano equilibran exactamente la componente de 60 N del peso dirigido hacia abajo
del plano.
"¿Cuál es el ángulo máximo 0 de la pendiente de un plano inclinado que permite que un
bloque de peso W no se deslice hacia abajo a lo largo del plano?
Plan: El ángulo máximo de la pendiente será aquel para el que la componente del peso
dirigido hacia abajo del plano sea suficiente para contrarrestar la máxima fuerza de fric
ción estática. Como siempre, nuestro enfoque comienza por trazar un bosquejo y luego
un diagrama de cuerpo libre (figura 4.17). Luego al aplicar las condiciones del equilibrio,
podemos aplicar la trigonometría para hallar el ángulo de inclinación.
Figura 4.17 El ángulo de reposo o limitante.