Page 103 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 103
84 Capítulo 4 Equilibrio traslacional y fricción
Por tanto, si recordamos que ¡xk = 0.2, escribimos la ecuación (4.14) como
0.8667 - (0.2)(40 Ib - 0.57) = 0
de donde se puede obtener el valor de T como sigue:
0.866T - 81b + 0.1T= 0
0.966T - 8 Ib = 0
0.966T = 8 Ib
81b
T = ------- = 8.3 Ib
0.966
Por consiguiente, se requiere una fuerza de 8.3 Ib para arrastrar el arcón con rapidez cons
tante cuando la cuerda forma un ángulo de 30° sobre la horizontal.
Un bloque de concreto de 120 N está en reposo en un plano inclinado a 30°. Si ¡¿k = 0.5,
¿qué fuerza P paralela al plano y dirigida hacia arriba de éste hará que el bloque se mueva
(a) hacia arriba del plano con rapidez constante y (b) hacia abajo del plano con rapidez
constante?
Plan: Primero se hace el bosquejo del problema (figura 4.16a) y luego se traza un diagra
ma de cuerpo libre para ambos casos. Para el movimiento hacia arriba se dibuja la figura
4.16b y para el movimiento hacia abajo se elabora la figura 4.16c. Advierta que la fuerza
de fricción se opone al movimiento en los dos casos y que hemos elegido el eje x a lo largo del
plano. Para ser congruente con el uso de los signos, consideramos positivas las fuerzas que
se dirigen hacia arriba del plano.
Solución (a): Aplicando la primera condición de equilibrio se obtiene
2 ) 3 = o p - A - wx = o (4.15)
2 ^ = o n - w = o (4.16)
A partir de la figura, las componentes x y y del peso son
Wx = (120 N) eos 60° = 60.0 N
W = (120 N) sen 60° = 104 N
(a) (b) (c)
Figura 4.16 (a) Fricción en un plano inclinado, (b) Movimiento hacia arriba del plano, (c) Movimiento
hacia abajo del plano. (Fotografías de Hemera Inc.)