Page 473 - Fisica General Burbano
P. 473

LEY DE BIOT Y SAVART: APLICACIONES 487


             En efecto: aplicando la fórmula de Biot y Savart y considerando que el ángulo j es 90º, ob-
          tendremos para valor de la inducción producida por cada uno de los elementos de un circuito cir-
          cular, en su centro (Fig. XXI-36):
                                                m 0  Idl
                                           dB =
                                               4  p  R 2
             Todos estos campos se suman aritméticamente, ya que tienen la misma dirección (perpendicu-
          lar al plano del circuito) y el mismo sentido (hacia el exterior), con lo que:
                                              I
                                  m  Idl   m  R z      m  I       m  I
                             B =   0   2  =  0  2  dl =  0  2  2  p  R =  0       c.q.d.
                                   p  R z 4  4 p      4 p  R      2  R

          XXI – 17. Campo magnético creado por un circuito circular en un punto del eje  Fig. XXI-36.– La inducción magnética
                «El vector inducción en el campo magnético creado en un punto del eje de un circuito cir-  dB ®  debida al elemento de corriente dl ®
                cular es perpendicular al plano de la espira y sentido el de avance de un sacacorchos que  en el centro del circuito circular, es
                gira con la corriente y cuyo módulo es:                                  perpendicular al plano del dibujo y
                                                                                         hacia afuera del papel.
                                               m 0  IR 2
                                         B =         32 /
      MUESTRA PARA EXAMEN. PROHIBIDA SU REPRODUCCIÓN. COPYRIGHT EDITORIAL TÉBAR
                                                2
                                             2  R + a 2
                I es la intensidad de corriente que circula por el circuito, R es el radio de la espira y a es la
                distancia del punto del eje al centro del circuito».
             Demostraremos lo dicho anteriormente aplicando la fórmula de Biot y Savart; la inducción del
          campo magnético creada por el elemento  dl  (Fig. XXI-37) en un punto  P del eje, teniendo en
          cuenta que la dirección de la corriente y la distancia r son perpendiculares (j =90º), nos quedará:
                                               m 0  Idl
                                            B =
                                               4 p  r 2                                  Fig. XXI-37.– Vector inducción en el
             Descomponiendo el vector dB en los ejes X e Y de la figura, y teniendo en cuenta que la com-  campo magnético producido por ele-
                                                                                                       ®
          ponente del eje Y se nos anulará con la componente de la inducción creada por el elemento dl¢en  mento de corriente dl  , en el punto P
          el punto P, y que esto nos ocurrirá con todas las componentes en el plano p de las inducciones  perteneciente al eje.
          creadas por todos los elementos que constituyen la espira (Fig. XXI-38), sacamos en consecuencia
          que la inducción activa será la suma (integral) de todas las componentes de las induc-
          ciones magnéticas creadas por todos los elementos de corriente, según el eje X. Te-
          niendo en cuenta que la componente dB toma el valor:
                                          x
                                         m 0  Idl
                                   dB =        cos  b
                                      x
                                         4 p  r 2
          y que de la Fig. XXI-37, se deduce:
                                                       R      R
                      2
                     r = R 2  + a 2  Ù  cos b  =sen  ( 90  -)b  =  =
                                                       r    R + a 2
                                                             2
           sustituyendo tenemos:      dB =      m 0  IR  dl
                                         x
                                                 2
                                            4 p  R + a 2  32 /                Fig. XXI-38.– Las componentes de la inducción
                                                                              magnética en el plano p se anulan.
          e integrando para todo el circuito:
               zz          m  IR            m  IR    z        m  IR             m  IR 2
                                                                                 0
                                                               0
                                             0
                            0
            B =  d B =  4 p  R + a 2  32 /  dl =  4  p  R + a 2  32 /  dl =  4 p  R + a 2  32 /  2  p  R =  2  R + a 2  32 /  c.q.d.
                   x
                                             2
                             2
                                                               2
                                                                                 2
             Si tenemos un arrollamiento de n espiras, y suponiendo que el circuito así formado es plano, la
          inducción magnética creada por él en un punto del eje a una distancia a (mucho mayor que el es-
          pesor del arrollamiento) será:
                                               m 0  nI R 2
                                         B =         32 /                          (12)
                                                2
                                             2  R + a 2
          DISCO Henry Augustus DE ROWLAND (1848-1901). Si en un disco construido de material aislante, fi-
          jamos una pequeña superficie conductora cargada (positivamente en la Fig. XXI-39), y se hace gi-
          rar, en sus proximidades se orientan magnetómetros de la misma forma que lo harían en las proxi-
          midades de un circuito circular. Las medidas experimentales realizadas de la intensidad del campo
          magnético, coinciden con el valor que se obtendría al determinarlo con la expresión que teórica-
          mente hemos obtenido.
             PROBLEMAS:34 al 41.                                                         Fig. XXI-39.– Disco de Rowland.
   468   469   470   471   472   473   474   475   476   477   478