Page 177 - Física Tippens: Conceptos y Aplicaciones, Séptima Edición Revisada
P. 177
158 Capítulo 8 Trabajo, energía y potencia
La razón principal de aplicar una fuerza resultante es causar un desplazamiento. Por ejem
plo, una enorme grúa que levanta una viga de acero hasta la parte superior de un edificio; el
compresor de un acondicionador de aire que fuerza el paso de un fluido a través de su ciclo
de enfriamiento, y las fuerzas electromagnéticas que mueven electrones por la pantalla de
un televisor. Como aprenderemos aquí, siempre que una fuerza actúa a distancia se realiza un
trabajo, el cual es posible predecir o medir. La capacidad de realizar trabajo se define como
energía y la razón de cambio que puede efectuar se definirá como potencia. En la actualidad,
las industrias centran su interés principal en el uso y el control de la energía, por lo que es
esencial comprender a fondo los conceptos de trabajo, energía y potencia.
Trabajo
Cuando tratamos de arrastrar un carro con una cuerda, como se observa en la figura 8.1a, no
pasa nada. Estamos ejerciendo una fuerza y, sin embargo, el carro no se ha movido. Por otra
parte, si incrementamos en forma continua esta fuerza, llegará un momento en que el carro
se desplazará. En este caso, en realidad hemos logrado algo a cambio de nuestro esfuerzo. En
física este logro se define como trabajo. El término trabajo tiene una definición operacional,
explícita y cuantitativa. Para que se realice un trabajo han de cumplirse tres requisitos:
1. Debe haber una fuerza aplicada.
2. La fuerza debe actuar a través de cierta distancia, llamada desplazamiento.
3. La fuerza debe tener una componente a lo largo del desplazamiento.
Suponiendo que se cumplen esas condiciones, es posible dar una definición formal de
trabajo:
Trabajo es una cantidad escalar igual al p roducto de las m agnitudes del despla
zam iento y de la com ponente de la fuerza en la dirección del desplazam iento.
Trabajo = Componente de lajiierza X desplazamiento
Trabajo = F x (8.1)
En esta ecuación, F. es la componente de F a lo largo del desplazamiento x. En la figura
8.1, sólo Fx contribuye al trabajo. Su magnitud puede determinarse por trigonometría, y el
trabajo puede expresarse en términos del ángulo 9 formado entre F y x :
Trabajo = (F eos 9 )x (8.2)
Con gran frecuencia la fuerza que realiza el trabajo está dirigida íntegramente a lo largo
del desplazamiento. Esto sucede cuando una pesa se eleva en forma vertical o cuando una
fuerza horizontal arrastra un objeto por el piso. En estos casos sencillos, F = F, y el trabajo
es simplemente el producto de la fuerza por el desplazamiento:
Trabajo = Fx (8.3)
F F F
(a) Trabajo = 0 (b) Trabajo = (F eos 6) x
Figura 8.1 El trabajo realizado por una fuerza F que ocasiona un desplazamiento x.